1400
Annex II Climate System Scenario Tables
AII
References
Calvin, K., et al., 2012: The role of Asia in mitigating climate change: Results from the
Asia modeling exercise. Energy Econ., 34, S251–S260.
Cionni, I., V. Eyring, J. Lamarque, W. Randel, D. Stevenson, F. Wu, G. Bodeker, T.
Shepherd, D. Shindell, and D. Waugh, 2011: Ozone database in support of CMIP5
simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys.,
11, 11267–11292.
Cofala, J., M. Amann, Z. Klimont, K. Kupiainen, and L. Hoglund-Isaksson, 2007:
Scenarios of global anthropogenic emissions of air pollutants and methane until
2030. Atmos. Environ., 41, 8486–8499.
Dentener, F., D. Stevenson, J. Cofala, R. Mechler, M. Amann, P. Bergamaschi, F. Raes,
and R. Derwent, 2005: The impact of air pollutant and methane emission
controls on tropospheric ozone and radiative forcing: CTM calculations for the
period 1990-2030. Atmos. Chem. Phys., 5, 1731–1755.
Dentener, F., et al., 2006: The global atmospheric environment for the next
generation. Environ. Sci. Technol., 40, 3586–3594.
Douglass, A. and V. Fioletov, 2010: Stratospheric Ozone and Surface Ultraviolet
Radiation in Scientific Assessment of Ozone Depletion: 2010. Global Ozone
Research and Monitoring Project-Report No. 52.World Meteorological
Organization, Geneva, Switzerland.
Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, 2008: How a
century of ammonia synthesis changed the world. Nature Geosci., 1, 636–639.
Eyring, V., et al., 2013: Long-term ozone changes and associated climate impacts in
CMIP5 simulations. J. Geophys. Res., doi:10.1002/jgrd.50316.
Fiore, A. M., et al., 2012: Global air quality and climate. Chem. Soc. Rev., 41, 6663–
6683.
Fleming, E., C. Jackman, R. Stolarski and A. Douglass, 2011: A model study of the
impact of source gas changes on the stratosphere for 1850-2100. Atmos. Chem.
Phys., 11, 8515–8541.
Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka, 2013:
Evaluating adjusted forcing and model spread for historical and future scenarios
in the CMIP5 generation of climate models. J. Geophys. Res., 118, 1139–1150.
Friedlingstein, P., et al., 2006: Climate-carbon cycle feedback analysis: Results from
the C4MIP model intercomparison. J. Clim., 19, 3337–3353.
Holmes, C. D., M. J. Prather, A.O. Søvde, and G. Myhre, 2013: Future methane,
hydroxyl, and their uncertainties: Key climate and emission parameters for future
predictions. Atmos. Chem. Phys., 13, 285–302.
HTAP, 2010. Hemispheric Transport of Air Pollution 2010, Part A: Ozone and
Particulate Matter. United Nations, Geneva, Switzerland.
Jones, C. D., et al., 2013: 21st Century compatible CO2 emissions and airborne
fraction simulated by CMIP5 Earth System models under 4 Representative
Concentration Pathways. J. Clim., doi:10.1175/JCLI-D-12-00554.1.
Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. Van Vuuren, A. J.
Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-
active gases and aerosols in the Representative Concentration Pathways. Clim.
Change, 109, 191–212.
Lamarque, J. F., et al., 2010: Historical (1850-2000) gridded anthropogenic and
biomass burning emissions of reactive gases and aerosols: methodology and
application. Atmos. Chem. Phys., 10, 7017–7039.
Lamarque, J. F., et al., 2013: The Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP): Overview and description of models,
simulations and climate diagnostics. Geosci. Model Dev., 6, 179–206.
Meinshausen, M., T. M. L. Wigley, and S. C. B. Raper, 2011b: Emulating atmosphere-
ocean and carbon cycle models with a simpler model, MAGICC6-Part 2:
Applications. Atmos. Chem. Phys., 11, 1457–1471.
Meinshausen, M., et al., 2011a: The RCP greenhouse gas concentrations and their
extensions from 1765 to 2300. Clim. Change, 109, 213–241.
Moss, R. H., et al., 2010: The next generation of scenarios for climate change research
and assessment. Nature, 463, 747–756.
Prather, M., et al., 2001: Atmospheric chemistry and greenhouse gases. In: Climate
Change 2001: The Scientific Basis. Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change [J. T.
Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell
and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, pp. 239–287.
Prather, M., et al., 2003: Fresh air in the 21st century? Geophys. Res. Lett., 30, 1100.
Prather, M. J., C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios:
Systematic exploration of uncertainties and the role of atmospheric chemistry.
Geophys. Res. Lett., 39, L09803.
Rogelj, J., et al., 2011: Emission pathways consistent with a 2°C global temperature
limit. Nature Clim. Change, 1, 413–418.
Shindell, D.T., J.-F. Lamarque, M. Schulz, M. Flanner, et al., 2013: Radiative forcing in
the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13,
2939–2974.
Stevenson, D. S., et al., 2013: Tropospheric ozone changes, radiative forcing and
attribution to emissions in the Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085.
van Vuuren, D. P., et al., 2008: Temperature increase of 21st century mitigation
scenarios. Proc. Natl. Acad. Sci. U.S.A., 105, 15258–15262.
van Vuuren, D., et al., 2011: The representative concentration pathways: An overview.
Clim. Change, 109, 5–31.
Voulgarakis, A., et al., 2013: Analysis of present day and future OH and methane
lifetime in the ACCMIP simulations. 21 Atmos. Chem. Phys., 13, 2563–2587.
Wild, O., A.M. Fiore et al., 2012: Modelling future changes in surface ozone: A
parameterized approach. Atmos. Chem. Phys., 12, 2037–2054.
WMO. 2010. Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research
and Monitoring Project—Report No. 52. World Meteorological Organization,
Geneva, Switzerland.
Young, P. J., et al., 2013: Pre-industrial to end 21st century projections of tropospheric
ozone from the Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP). Atmos. Chem. Phys., 13, 2063–2090.